Atomic Structure-The **BIG** Picture

Discovery of the components of the atom and subsequent modeling of the atomic structure led to explosive advances in chemistry, medicine, and energy

Progression of the Atomic Model...Discovery of the electron

Thomson's "Plum Pudding" Model

"... the atoms of the elements consist of a number of negatively electrified corpuscles enclosed in a sphere of uniform positive electrification, ... "

Later discoveries invalidated this model

• He discovered the <u>electron (link)</u> in 1897 before

Millikan later determined the mass and charge of the electron:

Charge: 1.602 176 53(14) × 10⁻¹⁹ coulomb Mass: 9.10938188 × 10⁻³¹ kilograms , about 1/1840 of a proton

Millikan animation

Refining the atomic model

Rutherford's famous gold foil experiment:

- showed that the positive charge of the atom MUST be concentrated in a *tiny*, yet heavy volume he called the nucleus
- almost ALL of the mass of the atom is in the nucleus
- very light electrons surround this nucleus
- the volume that an atom occupies is mostly empty space

Gold foil animation

If a nucleus were as big as you are wide, the edge of its atom (outermost electron orbital) would be over a mile away!

Further refinement of the model

- What's in an atomic nucleus?
 - Protons-discovered by Rutherford
 - Positively charged 1.60217653 × 10⁻¹⁹ Coulomb
 - A diameter of about 1.65×10^{-15} m
 - Mass of 1.6726×10⁻²⁷ kg
 - About 1840 times the mass of an electron
 - Neutrons-discovered by Chadwick in 1932
 - Not charged
 - A diameter of about 1.65×10^{-15} m
 - Mass of 1.6749 x 10⁻²⁷ kg

Current model of the atom Nucleus (greatly magnified elative to the electron cloud Led to the current model Electron (cloud of charge) Nucleus ~10⁻⁴Å Lots of empty space! Bohr Model

- electrons in well defined "planetary" orbits or paths around the nucleus
- still good for visualizing the energy transitions of electrons
- overall spherical shape
- electrons occupy certain orbital volumes or clouds
- the type of cloud it occupies depends upon its energy or distance from the nucleus

http://education.jlab.org/qa/atom_model_04.gif

http://www.mhhe.com/physsci/astronomy/fix/student/images/16f07.jpg

Atomic number and Mass number

Number of electrons will equal the number of protons for an atom with NO NET CHARGE

Isotopes and Atomic Mass

What's the difference between MASS NUMBER and ATOMIC MASS?

It turns out that atoms OF THE SAME ELEMENT may exist as **ISOTOPES**.

ISOTOPE

• an atom with the same atomic number (same number of protons) but a *different* number of neutrons

• isotopes of the same atom have approximately the same chemical properties

Atomic Mass

• The amu (atomic mass unit) is the unit used to express the mass of an atom.

1 amu = 1/12 of the mass of the C-12 isotope of carbon

 $1 \text{ amu} = 1.66053886 \times 10^{-24} \text{ grams}$

The mass of 1 proton or 1 neutron is approximately 1 amu.

Carbon-12 makes up 98.89% of naturally-occurring carbon. Carbon-13 makes up 1.11% of naturally occurring carbon. Use this information to determine the average atomic mass of carbon.

(12amu)(.9889) + (13 amu)(.0111) = 12.0111 amu

Atomic Charge and IONS

- Atoms in elements are not charged because the number of protons = the number of electrons
- When an atom GAINS one or more electrons, it becomes NEGATIVELY charged because it now holds more electrons than protons
- When an atom LOSES one or more electrons, it becomes POSITIVELY charged because it now holds fewer electrons than protons
- IONS are charged atoms. A CATION is positively charged.
 An ANION is negatively charged.